Лаборатория анализа регуляции генов | Институт молекулярной генетики РАН

Шевелев Юрий Ясенович

Шевелев Юрий Ясенович
Заведующий лабораторией
Ученая степень:
кандидат биологических наук
Ученое звание:
без ученого звания
Адрес электронной почты:
Телефон:
   
   

Список сотрудников

   
   

Основные направления исследований

Исследование регуляции работы генов в зависимости от архитектуры хромосом в ядре.
Изучение механизмов, определяющих хромосомную архитектуру.

   
   

Основные достижения

Установлено, что кластеры тканеспецифичных генов являются универсальным способом организации генов у дрозофилы (Boutanaev et al. 2002; Shevelyov et al. 2009).
Показано существование механизма координированной регуляции транскрипции генов в кластерах на хроматиновом уровне (Kalmykova et al. 2005).
Выявлена роль ядерной ламины в сайленсинге кластеров тканеспецифичных генов (Shevelyov et al. 2009).
Установлена роль ядерной ламины в нахождении хроматина кластеров тканеспецифичных генов вблизи ядерной оболочки (Shevelyov et al. 2009; Shevelyov and Nurminsky 2012);
Показано, что у дрозофилы гистондеацетилаза HDAC3, но не гистондеацетилаза HDAC1, участвует в прикреплении кластеров тканеспецифичных генов к ядерной оболочке (Milon et al. 2012).
Показано, что хроматин в ядре дрозофилы сегрегирует на активные и неактивные топологические домены (ТАДы) благодяря способности нуклеосом неактивного хроматина слипаться друг с другом (Ulianov et al. 2016; Gavrilov et al. 2016);
Установлено, что в соматических клетках яичников дрозофилы главный эффекторный белок системы piРНК-сайленсинга Piwi взаимодействует с хроматином в составе ядерных пор и неспецифически связывается со множеством ядерных транскриптов как генов, так и мобильных элементов (Ilyin et al. 2017).

 

Лаборатория анализа регуляции генов Лаборатория анализа регуляции генов
    
    

Основные публикации

  1. Gvozdev VA, Kogan GL, Tulin AA, Aravin AA, Naumova NM, Shevelyov YY. Paralogous Stellate and Su(Ste) repeats: evolution and ability to silence a reporter gene. Genetica, 2002, 109:131-140.
  2. Kalmykova AI, Shevelyov YY, Polesskaya OO, Dobritsa AA, Evstafieva AG, Boldyreff B, Issinger O-G, Gvozdev VA. CK2btes gene encodes a testis-specific isoform of the regulatory subunit of casein kinase 2 in Drosophila melanogaster. Eur. J. Biochem., 2002, 269:1418-1427.
  3. Boutanaev AM, Kalmykova AI, Shevelyov YY, Nurminsky DI. Large clusters of co-expressed genes in the Drosophila genome. Nature, 2002, 420:666-669.
  4. Gvozdev VA, Aravin AA, Abramov YA, Klenov MS, Kogan GL, Lavrov SA, Naumova NM, Olenkina OM, Tulin AV, Vagin VV. Stellate repeats: targets of silencing and modules causing cis-inactivation and trans-activation. Genetica, 2003, 117: 239-245.
  5. Kogan GL, Tulin AV, Aravin AA, Abramov YA, Kalmykova AI, Maisonhaute C, Gvozdev VA. The GATE retrotransposon in Drosophila melanogaster: mobility in heterochromatin and aspects of its expression in germline tissues. Mol. Genet. Genomics, 2003, 269:234-242.
  6. Kalmykova AI, Nurminsky DI, Ryzhov DV, Shevelyov YY. Regulated chromatin domain comprising cluster of co-expressed genes in Drosophila melanogaster. Nucleic Acids Res., 2005, 33:1435-1444.
  7. Abramov YA, Kogan GL, Tolchkov EV, Rasheva VI, Lavrov SA, Bonaccorsi S, Kramerova IA, Gvozdev VA. Eu-heterochromatic rearrangements induce replication of heterochromatic sequences normally underreplicated in polytene chromosomes of Drosophila melanogaster. Genetics, 2005, 171:1673-1681.
  8. Shevelyov YY, Lavrov SA, Mikhaylova LM, Nurminsky ID, Kulathinal RJ, Egorova KS, Rozovsky YM, Nurminsky DI. The B-type lamin is required for somatic repression of testis-specific gene clusters. Proc. Natl. Acad. Sci. USA, 2009, 106:3282-3287.
  9. Karr J, Vagin V, Chen K, Ganesan S, Olenkina O, Gvozdev V, Featherstone DE. Regulation of glutamate receptor subunit availability by microRNAs. J. Cell. Biol., 2009, 185:685-697.
  10. Egorova KS, Olenkina OM, Kibanov MV, Kalmykova AI, Gvozdev VA, Olenina LV. Genetically derepressed nucleoplasmic Stellate protein in spermatocytes of D. melanogaster interacts with the catalytic subunit of protein kinase 2 and carries histone-like lysine-methylated mark. J. Mol. Biol., 2009, 389:895-906.
  11. Shpiz S, Olovnikov I, Sergeeva A, Lavrov S, Abramov Y, Savitsky M, Kalmykova A. Mechanism of the piRNA-mediated silencing of Drosophila telomeric retrotransposons. Nucleic Acids Res., 2011, 39:8703-8711.
  12. Kibanov MV, Egorova KS, Ryazansky SS, Sokolova OA, Kotov AA, Olenkina OM, Stolyarenko AD, Gvozdev VA, Olenina LV. A novel organelle, the piNG-body, in the nuage of Drosophila male germ cells is associated with piRNA-mediated gene silencing. Mol. Biol. Cell, 2011, 22:3410-3419.
  13. Shevelyov YY, Nurminsky DI. The nuclear lamina as a gene-silencing hub. Curr. Issues Mol. Biol., 2012, 14:27-38.
  14. Milon BC, Cheng H, Tselebrovsky MV, Lavrov SA, Nenasheva VV, Mikhaleva EA, Shevelyov YY, Nurminsky DI. Role of histone deacetylases in gene regulation at nuclear lamina. PLoS One, 2012, 7:e49692.
  15. Olenkina OM, Egorova KS, Kibanov MV, Gervaziev YV, Gvozdev VA, Olenina LV. Promoter contribution to the testis-specific expression of Stellate gene family in Drosophila melanogaster. Gene, 2012, 499:143-153.
  16. Olovnikov I, Ryazansky S, Shpiz S, Lavrov S, Abramov Y, Vaury C, Jensen S, Kalmykova A. De novo piRNA cluster formation in the Drosophila germ line triggered by transgenes containing a transcribed transposon fragment. Nucleic Acids Res., 2013, 41:5757-5768.
  17. Shpiz S, Ryazansky S, Olovnikov I, Abramov Y, Kalmykova A. Euchromatic transposon insertions trigger production of novel pi- and endo-siRNAs at the target sites in the Drosophila germline. PLoS Genet., 2014, 10:e1004138.
  18. Morgunova V, Akulenko N, Radion E, Olovnikov I, Abramov Y, Olenina LV, Shpiz S, Kopytova DV, Georgieva SG, Kalmykova A. Telomeric repeat silencing in germ cells is essential for early development in Drosophila. Nucleic Acids Res., 2015, 43:8762-8773.
  19. Abramov YA, Shatskikh AS, Maksimenko OG, Bonaccorsi S, Gvozdev VA, Lavrov SA. The differences between cis- and trans-gene inactivation caused by heterochromatin in Drosophila. Genetics, 2016, 202:93-106.
  20. Ulianov SV, Khrameeva EE, Gavrilov AA, Flyamer IM, Kos P, Mikhaleva EA, Penin AA, Logacheva MD, Imakaev MV, Chertovich A, Gelfand MS, Shevelyov YY, Razin SV. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res., 2016, 26:70-84.
  21. Gavrilov AA, Shevelyov YY, Ulianov SV, Khrameeva EE, Kos P, Chertovich A, Razin SV. Unraveling the mechanisms of chromatin fibril packaging. Nucleus, 2016, 7:319-324.
  22. Kotov AA, Olenkina OM, Kibanov MV, Olenina LV. RNA helicase Belle (DDX3) is essential for male germline stem cell maintenance and division in Drosophila. Biochim. Biophys. Acta, 2016, 1863(6 Pt A):1093-1105.
  23. Ryazansky S, Radion E, Mironova A, Akulenko N, Abramov Y, Morgunova V, Kordyukova MY, Olovnikov I, Kalmykova A. Natural variation of piRNA expression affects immunity to transposable elements. PLoS Genet., 2017, 13:e1006731.
  24. Kotov AA, Olenkina OM, Godneeva BK, Adashev VE, Olenina LV. Progress in understanding the molecular functions of DDX3Y (DBY) in male germ cell development and maintenance. Biosci. Trends, 2017, 11:46-53.
  25. Ilyin AA, Ryazansky SS, Doronin SA, Olenkina OM, Mikhaleva EA, Yakushev EY, Abramov YA, Belyakin SN, Ivankin AV, Pindyurin AV, Gvozdev VA, Klenov MS, Shevelyov YY. Piwi interacts with chromatin at nuclear pores and promiscuously binds nuclear transcripts in Drosophila ovarian somatic cells. Nucleic Acids Res., 2017, 45:7666-7680.